Regularization of reaction progress variable for application to flamelet-based combustion models

نویسندگان

  • Matthias Ihme
  • Lee Shunn
  • Jian Zhang
چکیده

0021-9991/$ see front matter 2012 Elsevier Inc http://dx.doi.org/10.1016/j.jcp.2012.06.029 ⇑ Corresponding author. E-mail address: [email protected] (M. Ihme). Many combustion models that are based on the flamelet paradigm employ a reaction progress variable. While such a progress variable is well defined for one-step reaction kinetics, this is typically not the case for complex chemical mechanisms. Consequently, several expressions for a progress variable have been utilized. In this paper a formal method for the generation of a reaction progress variable is proposed that is optimal with respect to a set of constraints. The potential of the method is demonstrated in applications to partially premixed and diffusion flames, and the extension to premixed combustion is discussed. It is shown that the proposed method can lead to significant improvements in the definition of an optimal progress variable over conventional formulations, essentially eliminating the expert knowledge previously required in identifying such quantities. 2012 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward Large-eddy/reynolds-averaged Simulation of Supersonic Combustion

While flamelet-based progress variable models have matured to production-level in recent years for incompressible flows, little development toward compressible formulations of the flamelet model has ensued. For supersonic and hypersonic flows exhibiting combustion, an applicable flamelet-based combustion model must reflect the compressible nature of the flow, the tight coupling of the flow and ...

متن کامل

Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air

The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding ...

متن کامل

A five dimensional implementation of the flamelet generated manifolds technique for gas turbine application

In the present paper the Flamelet-Generated Manifold (FGM) chemistry reduction method is implemented and extended for the inclusion of all the features that are typically observed in stationary gas-turbine combustion. These consist of stratification effects, heat loss and turbulence. The latter is included by coupling FGM with the Reynolds Averaged Navier Stokes (RANS) model. Three control vari...

متن کامل

An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion

An unsteady flamelet/progress variable model has been developed and formulated as an extension of the steady flamelet/progress variable model. For this model, a large number of unsteady laminar flamelet simulations is performed for various conditions, and solutions are recorded as function of time. From this, a flamelet library is generated, which provides the filtered quantities of all scalar ...

متن کامل

Prediction of Pollutant Emissions from Industrial Furnaces Using Large Eddy Simulation

Accurate prediction of pollutant emissions from turbulent combustion around complex geometries is of great practical interest. Here, an industrial furnace with rich-burn/quick-quench/lean-burn combustion for NOx reduction is simulated. Large eddy simulation (LES) is employed as the simulation tool since it outperforms Reynolds-Averaged-Navier-Stokes (RANS) simulations in capturing large-scale u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012